1. Las pérdidas por difracción debidas a un obstáculo que obstruye la línea de visión
directa de un enlace:
a) Aumentan al aumentar la frecuencia.
b) Disminuyen al aumentar la frecuencia.
c) No varían con la frecuencia.
d) Son infinitas. | Aumentan al aumentar la frecuencia.
Justificación: La tierra es un buen conductor de frecuencias bajas, gracias a esto se puede provocar corrientes superficiales |
2. ¿Qué afirmación es cierta respecto a la onda de superficie?
a) Presenta variaciones entre el día y la noche.
b) Permite la propagación más allá del horizonte en las bandas de MF, HF y VHF.
c) La polarización horizontal se atenúa mucho más que la vertical.
d) El campo lejos de la antena es proporcional a la inversa de la distancia. | Permite la propagación más allá del horizonte en las bandas de MF, HF y VHF.
Justificación: Es el mecanismo de propagación a largas distancias |
3. La atenuación por absorción atmosférica:
a) Es constante con la frecuencia.
b) Siempre es creciente con la frecuencia.
c) Presenta picos de absorción a 22 y 60 GHz.
d) Presenta picos de absorción a 15 y 40 GHz. | Es constante con la frecuencia.
Justificación: la potencia perdida depende de la frecuencia y del material |
4. ¿Cuál es el fenómeno meteorológico que produce una mayor atenuación en la señal
en la banda de SHF?
a) granizo
b) nieve
c) niebla
d) lluvia | Lluvia
Justificación: Este fenómeno tiene que ser considerado ya es es causante de las atenuaciones en la señal. |
5. ¿Cuál de las siguientes afirmaciones es falsa?
a) La capa D sólo existe de noche y refleja HF.
b) capa E refleja de noche MF.
c) La capa F1 sólo existe de día y refleja HF.
d) La capa F2 refleja de noche HF. | La capa F2 refleja de noche HF
Justificación: Esta caja actúa en la noche, la capa F1 actúa en el día. |
6. El ángulo de incidencia mínimo de una señal de HF en la ionosfera, para que se
refleje:
a) Disminuye si la frecuencia de la señal aumenta.
b) Aumenta si la frecuencia de la señal aumenta.
c) Es independiente de la frecuencia.
d) Las señales de HF siempre se reflejan en la ionosfera. | Aumenta si la frecuencia de la señal aumenta.
Justificación: En las ondas HF de menor frecuencia esta dilata y reflectora en frecuencias superiores |
7. Para una determinada concentración de iones en la ionosfera y a una altura dada, la
distancia mínima de cobertura por reflexión ionosférica (zona de silencio)
a) Aumenta con la frecuencia.
b) Disminuye con la frecuencia.
c) No depende de la frecuencia.
d) Depende de la potencia radiada. | Aumenta con la frecuencia.
Justificación: Este fenómeno depende de la frecuencia de la señal sea transmitida |
8. Una emisora de radiodifusión que emite a una frecuencia de 1 MHz es captada por la noche hasta distancias de 1.000 km. ¿Cuál es el fenómeno de propagación?
a) Onda de superficie.
b) Reflexión ionosférica en capa E.
c) Reflexión ionosférica en capa F.
d) Difusión troposférica. | Reflexión ionosférica en capa E.
Justificación: La capa definida es las mas adecuada para transmitir en las condiciones indicadas |
9. Cuando una onda de frecuencia inferior a 3 MHz se emite hacia la ionosfera, ¿qué fenómeno no se produce nunca?
a) Rotación de la polarización.
b) Atenuación.
c) Absorción.
d) Transmisión hacia el espacio exterior. | Transmisión hacia el espacio exterior.
Justificación: La señal llega hasta la ionosfera |
10. Los radioaficionados utilizan en sus comunicaciones satélites en la banda de VHF.
¿Qué polarización utilizaría para optimizar la señal recibida?
a) Lineal vertical.
b) Lineal horizontal.
c) Circular.
d) Indistintamente cualquiera de las anteriores. | Circular
Justificación: Aumenta la capacidad de captar las señalas satelitales |
11. Para una comunicación a 100 MHz entre dos puntos sin visibilidad directa, separados 100 km y situados sobre una Tierra supuestamente esférica y conductora perfecta, las pérdidas por difracción entre los dos puntos:
a) Disminuyen al disminuir el radio equivalente de la tierra.
b) Disminuyen al aumentar la separación entre los puntos.
c) Aumentan al aumentar la altura de las antenas sobre el suelo.
d) Aumentan al aumentar la frecuencia. | Aumentan al aumentar la frecuencia.
Justificación: Estos valores depende de la frecuencia |
12. El alcance mínimo de una reflexión ionosférica en la capa F2 (altura=300 km, N=1012 elec/?3) para una frecuencia de 18 MHz es:
a) 260 km
b) 520 km
c) 1.039 km
d) 1.560 km | 1.039 km
Justificación: la capa F2 tiene un alcance de mas de 500km |
13. ¿Cuál es la máxima frecuencia de utilización de una capa de la ionosfera cuya densidad electrónica es de un millón de electrones por centímetro cúbico, para una
onda cuyo ángulo de elevación es de 60°?
a) 10,4 MHz
b) 18 MHz
c) 18 kHz
d) 10,4 kHz | 10,4 kHz
Justificación: Formulario |
14. En 1901 Marconi realizó la primera transmisión radioeléctrica transoceánica utilizando una frecuencia de:
a) 0,8 MHz
b) 40 MHz
c) 80 MHz
d) 400 MHz | 0,8 MHz
Justificación: Marconi estableció la primera
comunicación utilizando una frecuencia de 820KHz, 366m y una potencia de transmisión de 15kW. |
15. ¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite?
a) MF, circular.
b) SHF, lineal.
c) VHF, lineal.
d) UHF, lineal. | SHF, lineal.
Justificación: esta frecuencia y polarización es la indicada para transmitir vía satélite |
16. ¿Qué fenómeno permite establecer comunicaciones transoceánicas en C.B. (banda
ciudadana: 27 MHz)?
a) Difusión troposférica.
b) Refracción en la ionosfera.
c) Conductos atmosféricos.
d) Reflexión en la luna. | Refracción en la ionosfera.
Justificación: Permite el transporte de señales y transmitir señales por el océano |
17. Una señal de OM es captada a 30 km de la emisora. El mecanismo responsable de la propagación es:
a) Reflexión ionosférica.
b) Refracción troposférica.
c) Onda de espacio.
d) Onda de superficie. | Onda de superficie.
Justificación: esta señal es transmitida por la onda de superficie |
18. ¿Cuál de las siguientes afirmaciones sobre la fuente importante de ruido en cada banda es incorrecta?
a) Ruido atmosférico en 1-10 MHz.
b) Ruido industrial en 10-200 MHz.
c) Ruido cósmico en 100 MHz-1GHz.
d) Absorción molecular de gases atmosféricos en 1-10 GHz. | Absorción molecular de gases atmosféricos en 1-10 GHz.
Justificación: gases atmosféricos 3 - 100GHz |
19. Se desea establecer un enlace a 100 MHz con polarización horizontal entre dos puntos separados 1 km. Suponiendo la aproximación de tierra plana y conductora perfecta, ¿a qué altura colocaría las antenas sobre el suelo para obtener una interferencia constructiva entre la onda directa y la onda reflejada?
a) 27 m
b) 39 m
c) 55 m
d) 65 m | 27m
Justificación: formulario |
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia delplano?
a) 8 GHz
b) 4 GHz
c) 2 GHz
d) 1 GHz | 8 GHz
Justificación: mayor frecuencia menor distancia |
21. La máxima frecuencia utilizable (MUF):
a) depende de la hora del día;
b) depende de la estación del año;
c) no depende de la potencia transmitida;
d) Todas las anteriores son correctas | Todas las anteriores son correctas.
Justificación. Ya que la frecuencia de resonancia resonancia es la frecuencia a la que se produce reflexión cuando se incide normalmente a la ionosfera. |
22. El alcance de un sistema de comunicación ionosférica con un ángulo de elevación de 35º y una altura virtual de 355 km es:
a) 249 km.
b) 497 km.
c) 507 km.
d) 1014 km. | 1014 km. |
23. Un ionograma es la representación de:
a) la altura virtual en función de la frecuencia;
b) la densidad electrónica en función de la altura;
c) la frecuencia de plasma en función de la altura;
d) ninguna de las anteriores. | La altura virtual en función de la frecuencia
Justificación. Los ionogramas suelen contener una representación doble, es decir, una serie de líneas horizontales que representan la altura virtual en la que se produciría la reflexión en función de la frecuencia de trabajo |
24. Una onda electromagnética que incide verticalmente en una capa ionosférica la atraviesa:
a) siempre;
b) si la frecuencia de la onda es mayor que la máxima frecuencia de plasma de la capa;
c) si la frecuencia de la onda es menor que la mínima frecuencia de plasma de
la capa;
d) nunca. | Si la frecuencia de la onda es mayor que la máxima frecuencia de plasma de la capa;
Justificación. Si la frecuencia es superior a fp, la constante de fase es real. En este último caso la permitividad relativa es inferior a la unidad y por tanto la velocidad de fase es superior a la de la luz. |
25. ¿Cuál de las características siguientes NO es una desventaja de las comunicaciones ionosféricas?
a) Ancho de banda reducido.
b) Presencia de ruido e interferencias.
c) Distancias cortas.
d) Propagación multicamino | Distancias cortas.
Justificación. los efectos de la propagación multi-camino, mejora la relación señal a ruido y por tanto aumenta la cobertura de la célula. |
26. La capa ionosférica D:
a) refleja las frecuencias bajas;
b) está situada entre 90 y 130 km de altura;
c) permite la comunicación a frecuencias entre 30 y 100 MHz;
d) tan solo existe de noche. | Refleja las frecuencias bajas;
Justificación. Refleja frecuencias bajas y atenúa, por absorción parcial, las frecuencias medias y altas. |
27. La propagación ionosférica:
a) es el mecanismo típico de propagación a frecuencias de microondas;
b) consiste principalmente en reflexiones en la capa D de la ionosfera;
c) consigue generalmente mayores alcances de noche que de día;
d) ninguna de las anteriores. | Es el mecanismo típico de propagación a frecuencias de microondas;
Justificación. Divide las bandas HF en dos tipos: Llamamos bandas nocturnas a las bandas que sufren una fuerte atenuación por absorción en la capa D. Al caer la noche, la capa D desaparece y la propagación en las bandas nocturnas aumenta considerablemente. |
28. Durante la noche, la ionosfera está formada por las capas:
a) E y F;
b) E, F1 y F2;
c) D, E y F;
d) D, E, F1 y F2. | E y F;
Justificación Capa E propagación nocturnas a distancias superiores a los 1600 Km. Capa F1 y F2. De noche la capa F1 se une con la F2 a una altura de 300 Km |
29. ¿Cuál de las afirmaciones siguientes relativas a las capas de la ionosfera es cierta?
a) La densidad electrónica de las capas D y E varía muy rápidamente con la
altura.
b) La capa D atenúa las frecuencias bajas y refleja las frecuencias altas.
c) La capa E está situada a una altura de 500 km.
d) De día las capas F1 y F2 se fusionan en una única capa F. | La densidad electrónica de las capas D y E varía muy rápidamente con la altura.
Justificación. El máximo de densidad electrónica se produce a la altura en el que los dos procesos (producción y difusión) son igualmente importantes. |
30. La propagación por dispersión troposférica:
a) se utiliza típicamente con frecuencias inferiores a 100 MHz;
b) permite establecer comunicaciones a distancias superiores al horizonte;
c) es un mecanismo de transmisión muy estable;
d) no requiere la utilización de técnicas de diversidad. | Permite establecer comunicaciones a distancias superiores al horizonte;
Justificación. Permite la comunicación por microondas más allá del horizonte |
31. En un radioenlace operando a 38 GHz, las pérdidas más importantes serán debidas a:
a) Reflexiones;
b) absorción atmosférica;
c) vegetación;
d) desapuntamiento de las antenas. | Vegetación;
Justificación. Entre otros factores a la perdida de energía provocada por la viscosidad del aire y el calor generado por el roce de las partículas del aire. |
32. La atenuación por gases atmosféricos:
a) es importante para frecuencias de ondas milimétricas;
b) presenta un máximo para una frecuencia de 60 GHz;
c) depende de la densidad del vapor de agua;
d) todas las anteriores son ciertas. | Depende de la densidad del vapor de agua;
Justificación. En frecuencias de hasta 1000 GHz debida al aire seco y al vapor de agua puede evaluarse con gran exactitud para cualquier valor de presión, temperatura y humedad |
33. Las pérdidas provocadas por la lluvia en un radioenlace:
a) son importantes para frecuencias de aproximadamente 1 GHz;
b) son mayores con polarización vertical que con horizontal;
c) presentan máximos para las frecuencias de resonancia de las moléculas de
agua;
d) son un fenómeno estadístico. | Son un fenómeno estadístico.
Justificación. en los radioenlaces troposféricos y por satélite se producen atenuaciones de la señal debidas a la absorción y dispersión causadas por hidrometeoros como la lluvia, la nieve, el granizo o la niebla. |
34. La propagación por onda de superficie:
a) es un mecanismo típico a frecuencias de UHF;
b) se realiza generalmente con polarización horizontal;
c) utiliza generalmente como antena transmisora un monopolo;
d) sólo se utiliza para distancias cortas como consecuencia de los obstáculos
del terreno. | Utiliza generalmente como antena transmisora un monopolo;
Justificación. La onda de superficie es el modo de propagación dominante en frecuencias bajas, entre 10 KHz y 10 MHz, para alturas de antenas pequeñas, aunque habrá de ser tenida en cuenta hasta frecuencias de 150 Mhz para alturas de antenas pequeñas y polarización vertical. |
35. Si en un radioenlace no existe visión directa entre la antena transmisora y receptora, entonces:
a) la señal recibida será menor que en el caso de espacio libre;
b) se debe elevar la antena transmisora hasta que exista visión;
c) se debe elevar la antena receptora hasta que exista visión;
d) no existe comunicación posible. | La señal recibida será menor que en el caso de espacio libre;
Justificación. En función de la fase de cada una de las contribuciones la suma de todas ellas puede ser constructiva o destructiva. En el caso de ser destructiva se producirá un fuerte desvanecimiento en la señal recibida. |
36. Un aumento de la constante de tierra ficticia k produce:
a) un aumento de la flecha;
b) una menor influencia de los obstáculos;
c) un aplanamiento de la superficie terrestre;
d) todas las anteriores. | Una menor influencia de los obstáculos; |
37. La relación entre los radios de la segunda y la primera zona de Fresnel en un punto determinado de un radioenlace es:
a) R2/R1= 4
b) R2/R1= 2
c) R2/R1= √2
d) Ninguna de las anteriores | R2/R1= √2
Justificación Las zonas de Fresnel son elipsoides de revolución cuyo eje mayor tiene una longitud de R+nl/2. La intersección de las zonas de Fresnel con el plano P son circunferencias cuyo radio puede calcularse para el caso que sea mucho menor que d1 y d2. |
38. | 1.050 km |
39. | 5Mhz |
40. | 146.8 KM |
41. Un radioenlace transhorizonte de 2000 km que ionosférica puede utilizar la banda de frecuencias: utiliza propagación
a) 1 – 50 MHz.
b) 100 – 500 MHz.
c) 500 – 1000 MHz.
d) 1 – 5 GHz. | (A)
Justifiacion. En los enlaces de unos 2000a 4000km de longitud, la capacidad de transmisión puede ser algo mayor. El ruido de intermodulación debido a la propagación por trayectos múltiples puede ser un factor importante; las frecuencias situadas alrededor de1a50 GHz |
42. 2) En un radioenlace punto a punto a 500 MHz donde se requiere una directividad de 25 dB, se debe elegir una antena:
a) Yagi.
b) Bocina.
c) Ranura.
d) Reflector parabólico.. | (A)
Justificación. la antena yagi compuesta de varios elementos puede darnos una ganancia de hasta 35dB |
43. El coeficiente de reflexión del terreno:
a) depende de la frecuencia y de la intensidad de campo;
b) depende de la frecuencia y del ángulo de incidencia;
c) tiene generalmente un módulo mayor que la unidad;
d) ninguna de las anteriores.. | (B)
Justificacion. El coeficiente de reflexión del terreno es utilizado cuando se consideran medios con discontinuidades en propagación de ondas. Un coeficiente de reflexión describe la frecuencia de una onda reflejada respecto a la onda incidente |
44. El fenómeno de reflexión difusa se produce generalmente:
a) en el caso de tierra plana;
b) para frecuencias elevadas;
c) para frecuencias bajas;
d) ninguna de las anteriores.. | (D)
Justificacion. La reflexión difusa se da sobre los cuerpos de superficies más o menos rugosas.Enellasunhazparalelo,alreflejarse,sedispersaorientándoselosrayosen direcciones diferentes. |
45. ¿Cuál de las afirmaciones siguientes relativas a la reflexión en terreno
moderadamente seco es correcta?
a) El coeficiente de reflexión vale -1 para incidencia rasante.
b) La reflexión tiene una mayor intensidad para frecuencias bajas.
c) Con polarización vertical, existe un determinado ángulo de incidencia para el que no hay prácticamente onda reflejada.
d) Todas las anteriores son correctas.. | (A)
Justificacion. El terreno se puede considerarse conductor a frecuencias inferiores a 1MHz. |
46. Considerando reflexión en tierra plana, la diferencia de caminos entre el rayo directo y el reflejado es independiente:
a) del coeficiente de reflexión del terreno;
b) de la altura del transmisor;
c) de la distancia entre transmisor y receptor;
d) de la frecuencia.. | Todas las anteriores son correctas
Justificación. Ya que la frecuencia de resonancia resonancia es la frecuencia a la que se produce reflexión cuando se incide normalmente a la ionosfera. |
47. El índice de refracción de la atmósfera:
a) siempre crece con la altura;
b) siempre decrece con la altura;
c) se mantiene constante con la altura;
d) es aproximadamente igual a 1.. | (D)
Justificacion. El índice de refracción de la parte superior de la atmósfera es n=1, elíndice de refracción en la superficie de la tierra dependerán de la densidad y la temperatura del aire |
48. En condiciones normales, el índice de refracción de la atmósfera:
a) vale 2/3;
b) crece con la altura;
c) decrece con la altura;
d) se mantiene constante con la altura.. | (C)
Justificacion. El índice de refracción disminuye con la altura, hasta que un límite a partir de la cual, consideraremos que los efectos ópticos de los gases enrarecidos son despreciables |
49. Si el índice de refracción de la atmósfera crece con la altura, entonces durante la propagación de una onda el haz:
a) se aleja de la superficie terrestre;
b) se acerca a la superficie terrestre;
c) transcurre paralelo a la superficie terrestre;
d) ninguna de las anteriores.. | (A)
Justificacion. Debido a la refracción en la atmósfera de los rayos de luz procedentes de los cuerpos celestes, su posición real no coincide con su posición aparente, la diferencia se denomina ángulo de refracción |
50. Si la curvatura del haz es igual que la de la superficie terrestre, entonces la
constante de tierra ficticia vale:
a) k = 0.
b) k = 1.
c) k = 4/3.
d) k = ∞ | (C)
Justificacion. Si el trayecto es casi horizontal ,sea próxima acero, como, por otra parte, n se aproxima mucho a 1 |
51. Si el haz se propaga de forma rectilínea, entonces la constante de tierra ficticia vale:
a) k = 0.
b) k = 1.
c) k = 4/3.
d) k = ∞ | (A)
Justificacion. Si el trayecto es casi horizontal ,sea próxima acero, como, por otra parte, n se aproxima mucho a 1 |
52. ¿Cuál de las afirmaciones siguientes relativas al fenómeno de difracción en obstáculo de “filo de cuchillo” es cierta?
a) Es posible recibir el doble de campo que respecto al caso de espacio libre.
b) El coeficiente de reflexión en el extremo del obstáculo es -0,3.
c) Las pérdidas que se produce
d) Ninguna de las anteriores. | (D)
Justificacion. La difracción es un fenómeno observable en los sistemas físicos en los que intervienen ondas, por el cual las mismas, cuando encuentran un obstáculo, pueden rodearlo parcialmente (por eso podemos oír el sonido a la vuelta de una esquina). |
53. Considerando el fenómeno de difracción en un obstáculo de coeficiente de reflexión igual a -1, se tiene que:
a) la potencia recibida puede llegar a ser nula aun existiendo visibilidad suficiente;
b) las pérdidas cuando existe obstrucción del haz son inferiores que en el caso de otros coeficientes de reflexión;
c) la potencia recibida nunca puede ser 6 dB superior que en el caso de espacio libre;
d) ninguna de las anteriores. | (B)
Justificacion. En este caso el ángulo es próximo acero, por lo que el coeficiente de reflexión es prácticamente-1 para las dos polarizaciones |
54. | -12.5 db |
55. | 15 m. |