Buscar
Estás en modo de exploración. debe iniciar sesión para usar MEMORY

   Inicia sesión para empezar

Tarea Semana 1 Daniel Palma


🇪🇸
In Español
Creado:


Public


5 / 5  (1 calificaciones)



» To start learning, click login

1 / 25

[Front]


Las pérdidas por difracción debidas a un obstáculo que obstruye la línea de visión directa de un enlace: a) Aumentan al aumentar la frecuencia. b) Disminuyen al aumentar la frecuencia. c) No varían con la frecuencia. d) Son infinitas
[Back]


a) Aumentan al aumentar la frecuencia. Justificación: La difracción permite que la información se transmita entre dos puntos sin que sean directamente visibles entre sí, pero a medida que aumenta la frecuencia, este efecto se vuelve menos importante porque, dependiendo de la banda de frecuencia, ciertos defectos son dominantes mientras que otros son desfavorables.

Practique preguntas conocidas

Manténgase al día con sus preguntas pendientes

Completa 5 preguntas para habilitar la práctica

Exámenes

Examen: pon a prueba tus habilidades

Pon a prueba tus habilidades en el modo de examen

Aprenda nuevas preguntas

Modos dinámicos

InteligenteMezcla inteligente de todos los modos
PersonalizadoUtilice la configuración para ponderar los modos dinámicos

Modo manual [beta]

Seleccione sus propios tipos de preguntas y respuestas
Modos específicos

Aprende con fichas
Completa la oración
Escuchar y deletrearOrtografía: escribe lo que escuchas
elección múltipleModo de elección múltiple
Expresión oralResponde con voz
Expresión oral y comprensión auditivaPractica la pronunciación
EscrituraModo de solo escritura

Tarea Semana 1 Daniel Palma - Marcador

0 usuarios han completado este curso. ¡sé el primero!

Ningún usuario ha jugado este curso todavía, sé el primero


Tarea Semana 1 Daniel Palma - Detalles

Niveles:

Preguntas:

55 preguntas
🇪🇸🇪🇸
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
Las pérdidas por difracción debidas a un obstáculo que obstruye la línea de visión directa de un enlace: a) Aumentan al aumentar la frecuencia. b) Disminuyen al aumentar la frecuencia. c) No varían con la frecuencia. d) Son infinitas
A) Aumentan al aumentar la frecuencia. Justificación: La difracción permite que la información se transmita entre dos puntos sin que sean directamente visibles entre sí, pero a medida que aumenta la frecuencia, este efecto se vuelve menos importante porque, dependiendo de la banda de frecuencia, ciertos defectos son dominantes mientras que otros son desfavorables.
¿Qué afirmación es cierta respecto a la onda de superficie? a) Presenta variaciones entre el día y la noche. b) Permite la propagación más allá del horizonte en las bandas de MF, HF y VHF. c) La polarización horizontal se atenúa mucho más que la vertical. d) El campo lejos de la antena es proporcional a la inversa de la distancia.
C) La polarización horizontal se atenúa mucho más que la vertical. Justificación: Una solución analítica muestra que cuando las antenas se acercan al suelo, la potencia de recepción disminuye en ambas polarizaciones hasta cierta altura, donde la potencia de recepción permanece constante en polarización vertical y continúa disminuyendo en polarización horizontal. Cuando la altura de las antenas es una fracción de longitud de onda, la potencia recibida en polarización horizontal es despreciable en comparación con la potencia recibida en polarización vertical.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
La atenuación por absorción atmosférica: a) Es constante con la frecuencia. b) Siempre es creciente con la frecuencia. c) Presenta picos de absorción a 22 y 60 GHz. d) Presenta picos de absorción a 15 y 40 GHz.
C) Presenta picos de absorción a 22 y 60 GHz. Justificación: Atenuación atmosférica total en función de la frecuencia del trayecto cenital. En el caso de rampas, se debe tener en cuenta el aumento de amortiguamiento debido a la longitud del camino atmosférico.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
¿Cuál es el fenómeno meteorológico que produce una mayor atenuación en la señal en la banda de SHF? a) granizo b) nieve c) niebla d) lluvia
D) lluvia. Justificación: El grupo SHF está destinado a la transmisión de programas de televisión por satélite. La atenuación atmosférica es del orden de unos 2 dB (nótese que la antena apunta a una órbita geoestacionaria ecuatorial), que puede aumentar en caso de lluvia.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
¿Cuál de las siguientes afirmaciones es falsa? a) La capa D sólo existe de noche y refleja HF. b) capa E refleja de noche MF. c) La capa F1 sólo existe de día y refleja HF. d) La capa F2 refleja de noche HF.
A) La capa D existe solo de noche y refleja HF. Justificación: durante el día, la capa D absorbe fuertemente en este rango de frecuencia, por lo que la reflexión ionosférica no es posible. Por la noche, cuando desaparece la capa D, se produce la propagación en la capa E a una distancia de 1000 km por reflexión ionosférica.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
El ángulo de incidencia mínimo de una señal de HF en la ionosfera, para que se refleje: a) Disminuye si la frecuencia de la señal aumenta. b) Aumenta si la frecuencia de la señal aumenta. c) Es independiente de la frecuencia. d) Las señales de HF siempre se reflejan en la ionosfera.
B) Aumenta si la frecuencia de la señal aumenta. Justificación: El efecto de la ionosfera es diferente en diferentes bandas de frecuencia. A frecuencias bajas y muy bajas (bandas LF y VLF) en la ionosfera hay un cambio repentino en el índice de refracción atmosférico λ. Esta repentina fluctuación produce un reflejo de la onda entrante en la parte inferior de la ionosfera.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
NA
NA
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
Para una determinada concentración de iones en la ionosfera y a una altura dada, la distancia mínima de cobertura por reflexión ionosférica (zona de silencio) a) Aumenta con la frecuencia. b) Disminuye con la frecuencia. c) No depende de la frecuencia. d) Depende de la potencia radiada.
A) Aumenta con la frecuencia. Justificación: El efecto de la ionosfera es diferente en diferentes bandas de frecuencia. A frecuencias bajas y muy bajas (bandas LF y VLF) en la ionosfera hay un cambio repentino en el índice de refracción atmosférico λ. Esta repentina fluctuación produce un reflejo de la onda entrante en la parte inferior de la ionosfera. A frecuencias más altas (MF y más altas), la onda penetra en la ionosfera. La ionosfera es un medio cuyo índice de refracción varía con la altitud. La densidad de ionización aumenta con la altura hasta alcanzar un máximo entre 300-500 km. A medida que aumenta la densidad de ionización, el índice de refracción disminuye, lo que hace que la onda se refracte.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
Una emisora de radiodifusión que emite a una frecuencia de 1 MHz es captada por la noche hasta distancias de 1.000 km. ¿Cuál es el fenómeno de propagación? a) Onda de superficie. b) Reflexión ionosférica en capa E. c) Reflexión ionosférica en capa F. d) Difusión troposférica.
B) Reflexión ionosférica en capa E. Justificación: La capa E es una zona intermedia entre 90 y 130 km de altitud. Su comportamiento está íntimamente relacionado con los ciclos solares. A pesar de las grandes fluctuaciones de ionización, mantiene un nivel significativo durante la noche. Por la noche, cuando desaparece la capa D, se produce la propagación en la capa E a una distancia de 1000 km por reflexión ionosférica. La dispersión ionosférica se disipa rápidamente debido a cambios en las condiciones ionosféricas locales. Por otro lado, esas áreas nocturnas excepcionales son propensas a interferencias con receptores cercanos de la misma frecuencia. En estas bandas de frecuencia, la electricidad estática es la mayor fuente de ruido.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
Cuando una onda de frecuencia inferior a 3 MHz se emite hacia la ionosfera, ¿qué fenómeno no se produce nunca? a) Rotación de la polarización. b) Atenuación. c) Absorción. d) Transmisión hacia el espacio exterior.
D) Transmisión hacia el espacio exterior. Justificación: En frecuencias bajas y muy bajas (bandas de frecuencia LF y VLF), la ionosfera asume un cambio repentino en el índice de refracción atmosférico λ. Esta repentina fluctuación produce un reflejo de la onda entrante en la parte inferior de la ionosfera.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
Los radioaficionados utilizan en sus comunicaciones satélites en la banda de VHF. ¿Qué polarización utilizaría para optimizar la señal recibida? a) Lineal vertical. b) Lineal horizontal. c) Circular. d) Indistintamente cualquiera de las anteriores.
C) Circular. Justificación: En el rango de VHF y UHF, puede tener valores impredecibles significativos. Por lo tanto, es necesario utilizar la polarización circular para las comunicaciones por geosatélite en estos grupos, porque el uso de la polarización lineal habría combinado pérdidas de separación impredecibles y variables con valores potencialmente altos.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
NA
NA
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
En 1901 Marconi realizó la primera transmisión radioeléctrica transoceánica utilizando una frecuencia de: a) 0,8 MHz b) 40 MHz c) 80 MHz d) 400 MHz
A) 0,8 MHz. Justificación: OM de onda media (OM: 526.5 - 1605.5 kHz) ubicado en la banda MF. Durante el día, la propagación se produce como ondas superficiales, cuyo alcance es de cientos de kilómetros de tamaño.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
B) SHF, lineal. Justificación: La frecuencia SHF está destinada a la transmisión de programas de televisión por satélite. Para frecuencias superiores a 10 GHz, la polarización lineal se puede utilizar sin una rotación de polos significativa y, de hecho, la reutilización de frecuencias mediante polarizaciones lineales ortogonales es común para las comunicaciones espaciales en estas bandas de frecuencia.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
¿Qué fenómeno permite establecer comunicaciones transoceánicas en C.B. (banda ciudadana: 27 MHz)? a) Difusión troposférica. b) Refracción en la ionosfera. c) Conductos atmosféricos. d) Reflexión en la luna.
B) Refracción en la ionosfera. Justificación: La dispersión en la ionosfera es refracción, el efecto total es reflexión, y las ondas electromagnéticas por debajo de 30 MHz que golpean la ionosfera de la Tierra se reflejan allí, lo que permite la comunicación por radio a largas distancias.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
Una señal de OM es captada a 30 km de la emisora. El mecanismo responsable de la propagación es: a) Reflexión ionosférica. b) Refracción troposférica. c) Onda de espacio. d) Onda de superficie.
D) Onda de superficie. Justificación: La onda de superficie es el mecanismo responsable de la transmisión a larga distancia en la banda de MF en la que se encuentra el servicio de transmisión de OM. Con una potencia de transmisión del orden de 100 kW, se consigue una cobertura de hasta 100 km con una señal de alta calidad (S/N ~ 30 dB) sin necesidad de línea de visión directa entre el transmisor y el receptor.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
¿Cuál de las siguientes afirmaciones sobre la fuente importante de ruido en cada banda es incorrecta? a) Ruido atmosférico en 1-10 MHz. b) Ruido industrial en 10-200 MHz. c) Ruido cósmico en 100 MHz-1GHz. d) Absorción molecular de gases atmosféricos en 1-10 GHz.
D) Absorción molecular de gases atmosféricos en 1-10 GHz. Justificación: Fuentes extraterrestres. Ruido galáctico causado por la radiación de radiofrecuencia de las estrellas que forman la galaxia. Radiación solar y ruido de fondo cósmico. > Emisiones radioeléctricas de la superficie terrestre y la atmósfera. > Ruido atmosférico producido por descargas eléctricas (truenos, tormentas, etc.), habitualmente denominados parásitos atmosféricos. > Ruido humano e industrial de motores eléctricos, líneas de alta tensión, etc.
Se desea establecer un enlace a 100 MHz con polarización horizontal entre dos puntos separados 1 km. Suponiendo la aproximación de tierra plana y conductora perfecta, ¿a qué altura colocaría las antenas sobre el suelo para obtener una interferencia constructiva entre la onda directa y la onda reflejada? a) 27 m b) 39 m c) 55 m d) 65 m
A) 27 m. Justificación: Cada onda se caracteriza por su frecuencia (f) y longitud de onda (λ), ambas relacionadas con la velocidad de propagación del medio, que suele tener las características de un vacío en las antenas (c=3·108 m/s), donde c = λ.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
A) 8 GHz Justificación: Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
La máxima frecuencia utilizable (MUF): a) depende de la hora del día; b) depende de la estación del año; c) no depende de la potencia transmitida; d) Todas las anteriores son correctas.
A) depende de la hora del día; Justificación: La distancia recorrida en la ionosfera depende del ángulo de incidencia y de la altura virtual a la que se produce la reflexión.
Un ionograma es la representación de: a) la altura virtual en función de la frecuencia; b) la densidad electrónica en función de la altura; c) la frecuencia de plasma en función de la altura; d) ninguna de las anteriores.
A) la altura virtual en función de la frecuencia; Justificación: Los ionogramas suelen contener una representación dual, es decir. una serie de líneas horizontales que representan la altura virtual a la que se produciría la reflexión en función de la frecuencia de funcionamiento.
Una onda electromagnética que incide verticalmente en una capa ionosférica la atraviesa: a) siempre; b) si la frecuencia de la onda es mayor que la máxima frecuencia de plasma de la capa; c) si la frecuencia de la onda es menor que la mínima frecuencia de plasma de la capa;
A) siempre; Justificación: Si la frecuencia es superior a (fp), la constante de fase es real, en este último caso la permitividad relativa es inferior a la unidad y por tanto la velocidad de fase es superior a la luz.
¿Cuál de las características siguientes NO es una desventaja de las comunicaciones ionosféricas? a) Ancho de banda reducido. b) Presencia de ruido e interferencias. c) Distancias cortas. d) Propagación multicamino.
C) Distancias cortas. Justificación: Los efectos de la propagación multi-camino, mejora la relación señal a ruido y por tanto aumenta la cobertura de la célula.
La capa ionosférica D: a) refleja las frecuencias bajas; b) está situada entre 90 y 130 km de altura; c) permite la comunicación a frecuencias entre 30 y 100 MHz; d) tan solo existe de noche.
A) refleja las frecuencias bajas; Justificación: Refleja frecuencias bajas y atenúa, por absorción parcial, las frecuencias medias y altas.
La propagación ionosférica: a) es el mecanismo típico de propagación a frecuencias de microondas; b) consiste principalmente en reflexiones en la capa D de la ionosfera; c) consigue generalmente mayores alcances de noche que de día; d) ninguna de las anteriores.
D) ninguna de las anteriores. Justificación: Divide las bandas HF en dos tipos: Llamamos bandas nocturnas a las bandas que sufren una fuerte atenuación por absorción en la capa D. Al caer la noche, la capa D desaparece y la propagación en las bandas nocturnas aumenta considerablemente.
Durante la noche, la ionosfera está formada por las capas: a) E y F; b) E, F1 y F2; c) D, E y F; d) D, E, F1 y F2.
A) E y F; Justificación: Capa E propagación nocturnas a distancias superiores a los 1600 Km. Capa F1 y F2. De noche la capa F1 se une con la F2 a una altura de 300 Km.
En un radioenlace operando a 38 GHz, las pérdidas más importantes serán debidas a: a) Reflexiones; b) absorción atmosférica; c) vegetación; d) desapuntamiento de las antenas.
B) absorción atmosférica; Justificación: Entre otros factores a la perdida de energía provocada por la viscosidad del aire y el calor generado por el roce de las partículas del aire.
La atenuación por gases atmosféricos: a) es importante para frecuencias de ondas milimétricas; b) presenta un máximo para una frecuencia de 60 GHz; c) depende de la densidad del vapor de agua; d) todas las anteriores son ciertas.
C) depende de la densidad del vapor de agua; Justificación: Incluso a frecuencias de 1000 GHz, se puede estimar con gran precisión para cualquier valor de presión, temperatura y humedad debido al aire seco y al vapor de agua.
Las pérdidas provocadas por la lluvia en un radioenlace: a) son importantes para frecuencias de aproximadamente 1 GHz; b) son mayores con polarización vertical que con horizontal; c) presentan máximos para las frecuencias de resonancia de las moléculas de agua; d) son un fenómeno estadístico.
D) son un fenómeno estadístico. Justificación: En los radioenlaces troposféricos y por satélite se producen atenuaciones de la señal debidas a la absorción y dispersión causadas por hidrometeoros como la lluvia, la nieve, el granizo o la niebla.
La propagación por onda de superficie: a) es un mecanismo típico a frecuencias de UHF; b) se realiza generalmente con polarización horizontal; c) utiliza generalmente como antena transmisora un monopolo; d) sólo se utiliza para distancias cortas como consecuencia de los obstáculos del terreno.
D) sólo se utiliza para distancias cortas como consecuencia de los obstáculos del terreno Justificación: La onda de superficie es el modo de propagación dominante a bajas frecuencias, entre 10 KHz y 10 MHz, con alturas de antena pequeñas, aunque debe considerarse hasta 150 MHz para alturas de antena bajas y polarización vertical.
Si en un radioenlace no existe visión directa entre la antena transmisora y receptora, entonces: a) la señal recibida será menor que en el caso de espacio libre; b) se debe elevar la antena transmisora hasta que exista visión; c) se debe elevar la antena receptora hasta que exista visión; d) no existe comunicación posible.
A) la señal recibida será menor que en el caso de espacio libre; Justificación: En función de fase de cada una contribución la suma de las mismas puede ser constructiva o destructiva este caso ser destructiva se producirá bastante el desvanecimiento de señal recibida.
La relación entre los radios de la segunda y la primera zona de Fresnel en un punto determinado de un radioenlace es: a) R2/R1= 4 b) R2/R1= 2 c) R2/R1= √2 d) Ninguna de las anteriores
Respuesta: c) R2/R1= √2 Justificación: Las zonas de Fresnel son elipsoides de revolución cuyo eje mayor tiene una longitud de R+nl/2. La intersección de las zonas de Fresnel con el plano P son circunferencias cuyo radio puede calcular separando el caso que sea mucho menor que d1 y d2
En un radioenlace punto a punto a 500 MHz donde se requiere una directividad de 25 dB, se debe elegir una antena: a) Yagi. b) Bocina. c) Ranura. d) Reflector parabólico..
D) Reflector parabólico.. Justificación: Tiene mayor conectividad en comparación al otro tipo de antenas por lo que es mas ideal.
El coeficiente de reflexión del terreno: a) depende de la frecuencia y de la intensidad de campo; b) depende de la frecuencia y del ángulo de incidencia; c) tiene generalmente un módulo mayor que la unidad; d) ninguna de las anteriores..
B) depende de la frecuencia y del ángulo de incidencia; Justificación: Los coeficientes de reflexión son función del tipo del suelo, de la polarización de la frecuencia del ángulo de incidencia.
El fenómeno de reflexión difusa se produce generalmente: a) en el caso de tierra plana; b) para frecuencias elevadas; c) para frecuencias bajas; d) ninguna de las anteriores..
B) para frecuencias elevadas; Justificación: El mecanismo mas amplio por lo cual la superficie produce una reflexión difusa no tiene que ver exactamente con la superficie.
Considerando reflexión en tierra plana, la diferencia de caminos entre el rayo directo y el reflejado es independiente: a) del coeficiente de reflexión del terreno; b) de la altura del transmisor; c) de la distancia entre transmisor y receptor; d) de la frecuencia..
D) de la frecuencia. Justificación: También contribuyen a la ionización la incidencia de partículas cargadas (protones y electrones) de origen solar y los rayos cósmicos galácticos
El índice de refracción de la atmósfera: a) siempre crece con la altura; b) siempre decrece con la altura; c) se mantiene constante con la altura; d) es aproximadamente igual a 1..
D) es aproximadamente igual a 1.. Justificación: Para un atmosfera normal que el índice de refracción disminuye con la altura, el índice de refracción del aire es muy próximo a la unidad.
En condiciones normales, el índice de refracción de la atmósfera: a) vale 2/3; b) crece con la altura; c) decrece con la altura; d) se mantiene constante con la altura..
C) decrece con la altura; Justificación: Una atmosfera normal, que el índice de refracción disminuye con la altura.
Si la curvatura del haz es igual que la de la superficie terrestre, entonces la constante de tierra ficticia vale: a) k = 0. b) k = 1. c) k = 4/3. d) k = ∞
D) k = ∞ Justificación: Por que el radio equivalente de la tierra es infinito, el radio de la curvatura delo rayo y el radio real de la tierra es el mismo.
Si el haz se propaga de forma rectilínea, entonces la constante de tierra ficticia vale: a) k = 0. b) k = 1. c) k = 4/3. d) k = ∞
C) k = 4/3.Justificación:La absorción atmosférica es la disminución de la intensidad luminosa de una fuente celeste, causada por los gases que componen la atmósfera. Crece rápidamente en las capas más bajas dela atmósfera, cuya densidad es mucho más elevada que la de los estratos superiores.