TALLER EN CLASE SEMANA 1
🇪🇸
In Español
In Español
Practique preguntas conocidas
Manténgase al día con sus preguntas pendientes
Completa 5 preguntas para habilitar la práctica
Exámenes
Examen: pon a prueba tus habilidades
Pon a prueba tus habilidades en el modo de examen
Aprenda nuevas preguntas
Modos dinámicos
InteligenteMezcla inteligente de todos los modos
PersonalizadoUtilice la configuración para ponderar los modos dinámicos
Modo manual [beta]
Seleccione sus propios tipos de preguntas y respuestas
Modos específicos
Aprende con fichas
Completa la oración
Escuchar y deletrearOrtografía: escribe lo que escuchas
elección múltipleModo de elección múltiple
Expresión oralResponde con voz
Expresión oral y comprensión auditivaPractica la pronunciación
EscrituraModo de solo escritura
TALLER EN CLASE SEMANA 1 - Marcador
TALLER EN CLASE SEMANA 1 - Detalles
Niveles:
Preguntas:
55 preguntas
🇪🇸 | 🇪🇸 |
Las pérdidas por difracción debidas a un obstáculo que obstruye la línea de visión directa de un enlace: a) Aumentan al aumentar la frecuencia. b) Disminuyen al aumentar la frecuencia. c) No varían con la frecuencia. d) Son infinitas. | Respuesta.. a) Aumentan al aumentar la frecuencia. Justificación: La difracción permite comunicar dos puntos sin que exista visibilidad directa entre ellos; sin embargo, al aumentar la frecuencia este efecto tiene menos relevancia y para frecuencias de la banda de UHF y superiores la presencia de un obstáculo (montañas, edificios, etc.) que obstruya la trayectoria entre las antenas puede limitar gravemente las posibilidades de comunicación. Por tanto, en función de la banda de frecuencias ciertos efectos serán predominantes mientras que otros serán despreciable. |
¿Qué afirmación es cierta respecto a la onda de superficie? a) Presenta variaciones entre el día y la noche. b) Permite la propagación más allá del horizonte en las bandas de MF, HF y VHF. c) La polarización horizontal se atenúa mucho más que la vertical. d) El campo lejos de la antena es proporcional a la inversa de la distancia. | Respuesta: c) La polarización horizontal se atenúa mucho más que la vertical. Justificación: La solución analítica se observa que, si las antenas se aproximan al suelo, la potencia recibida en ambas polarizaciones decrece hasta una cierta altura en que la potencia recibida en polarización vertical permanece constante, mientras que en polarización horizontal continúa decreciendo. Cuando la altura de las antenas es una fracción de la longitud de onda, la potencia recibida en polarización horizontal es despreciable frente a la potencia recibida en polarización vertical. |
La atenuación por absorción atmosférica: a) Es constante con la frecuencia. b) Siempre es creciente con la frecuencia. c) Presenta picos de absorción a 22 y 60 GHz. d) Presenta picos de absorción a 15 y 40 GHz. | Respuesta: c) Presenta picos de absorción a 22 y 60 GHz. Justificación: La atenuación total de la atmósfera en función de la frecuencia para un trayecto cenital. Para trayectos inclinados debe considerarse el incremento de atenuación debido a la mayor longitud del trayecto recorrido dentro de la atmósfera. |
¿Cuál es el fenómeno meteorológico que produce una mayor atenuación en la señal en la banda de SHF? a) granizo b) nieve c) niebla d) lluvia | Respuesta: d) lluvia Justificación: La banda dentro de SHF(Frecuencia super baja), está destinada a la difusión de programas de TV por satélite. La atenuación atmosférica es del orden de unos 2 dB (nótese que la antena apunta a la órbita geoestacionaria situada sobre el ecuador) que puede incrementarse en caso de lluvia. |
¿Cuál de las siguientes afirmaciones es falsa? a) La capa D sólo existe de noche y refleja HF. b) capa E refleja de noche MF. c) La capa F1 sólo existe de día y refleja HF. d) La capa F2 refleja de noche HF. | Respuesta: a) La capa D sólo existe de noche y refleja HF. Justificación: Durante el día la capa D presenta una fuerte absorción en esta banda de frecuencias por lo que no es posible la reflexión ionosférica. Por la noche, cuando la capa D desaparece, se produce propagación por reflexión ionosférica en la capa E con alcances del orden de los 1.000 km. |
El ángulo de incidencia mínimo de una señal de HF en la ionosfera, para que se refleje: a) Disminuye si la frecuencia de la señal aumenta. b) Aumenta si la frecuencia de la señal aumenta. c) Es independiente de la frecuencia. d) Las señales de HF siempre se reflejan en la ionosfera. | Respuesta: b) Aumenta si la frecuencia de la señal aumenta. Justificación: El efecto de la ionosfera es distinto para las diferentes bandas de frecuencias. A frecuencias bajas y muy bajas (bandas de LF y VLF) la ionosfera supone un cambio brusco en términos de λ del índice de refracción atmosférico. Esta variación abrupta produce una reflexión de la onda incidente en la parte baja de la ionosfera. |
Para una determinada concentración de iones en la ionosfera y a una altura dada, la distancia mínima de cobertura por reflexión ionosférica (zona de silencio) a) Aumenta con la frecuencia. b) Disminuye con la frecuencia. c) No depende de la frecuencia. d) Depende de la potencia radiada. | Respuesta: a) Aumenta con la frecuencia. Justificación: El efecto de la ionosfera es distinto para las diferentes bandas de frecuencias. A frecuencias bajas y muy bajas (bandas de LF y VLF) la ionosfera supone un cambio brusco en términos de λ del índice de refracción atmosférico. Esta variación abrupta produce una reflexión de la onda incidente en la parte baja de la ionosfera. A frecuencias más elevadas (MF y superiores) la onda penetra en la ionosfera. La ionosfera es un medio cuyo índice de refracción varía con la altura. La densidad de ionización aumenta con la altura hasta alcanzar el máximo entre los 300 y 500 km. A medida que la densidad de ionización aumenta, el índice de refracción disminuye, produciéndose la refracción de la onda. |
Una emisora de radiodifusión que emite a una frecuencia de 1 MHz es captada por la noche hasta distancias de 1.000 km. ¿Cuál es el fenómeno de propagación? a) Onda de superficie. b) Reflexión ionosférica en capa E. c) Reflexión ionosférica en capa F. d) Difusión troposférica. | Respuesta: b) Reflexión ionosférica en capa E. Justificación: La capa E es la zona intermedia comprendida entre los 90 y 130 km de altura. Su comportamiento está muy ligado a los ciclos solares. A pesar de presentar grandes variaciones de ionización conserva un nivel apreciable durante la noche. Por la noche, cuando la capa D desaparece, se produce propagación por reflexión ionosférica en la capa E con alcances del orden de los 1.000 km. La propagación ionosférica presenta desvanecimientos rápidos por modificaciones locales de las condiciones ionosférica. Por otra parte, estos alcances nocturnos extraordinarios están sujetos a interferencias por estaciones próximas al receptor que comparten la misma frecuencia. En estas bandas los parásitos atmosféricos son una fuente importante de ruido |
Cuando una onda de frecuencia inferior a 3 MHz se emite hacia la ionosfera, ¿qué fenómeno no se produce nunca? a) Rotación de la polarización. b) Atenuación. c) Absorción. d) Transmisión hacia el espacio exterior. | Respuesta: d) Transmisión hacia el espacio exterior. Justificación: Justificación: A frecuencias bajas y muy bajas (bandas de LF y VLF) la ionosfera supone un cambio brusco en términos de λ del índice de refracción atmosférico. Esta variación abrupta produce una reflexión de la onda incidente en la parte baja de la ionosfera. |
Los radioaficionados utilizan en sus comunicaciones satélites en la banda de VHF. ¿Qué polarización utilizaría para optimizar la señal recibida? a) Lineal vertical. b) Lineal horizontal. c) Circular. d) Indistintamente cualquiera de las anteriores. | Respuesta: c) Circular. Justificación: en las bandas de VHF y UHF puede tener valores considerables que son impredecibles. Es por este motivo que en estas bandas es necesario el empleo de polarización circular en las comunicaciones tierra - satélite, ya que el empleo de polarización lineal tendría asociadas pérdidas por desacoplo fluctuantes, impredecibles y con valores potencialmente elevados. |
Visibilidad directa, separados 100 km y situados sobre una Tierra supuestamente esférica y conductora perfecta, las pérdidas por difracción entre los dos puntos: a) Disminuyen al disminuir el radio equivalente de la tierra. b) Disminuyen al aumentar la separación entre los puntos. c) Aumentan al aumentar la altura de las antenas sobre el suelo. d) Aumentan al aumentar la frecuencia. | Respuesta: d) Aumentan al aumentar la frecuencia. Justificación: La difusión troposférica es importante en las bandas de VHF y UHF en las que el tamaño de las heterogeneidades es comparable a la longitud de onda, y la atenuación atmosférica es despreciable. |
El alcance mínimo de una reflexión ionosférica en la capa F2 (altura=300 km, N=1012 elec/m3) para una frecuencia de 18 MHz es: a) 260 km b) 520 km c) 1.039 km d) 1.560 km | Respuesta: c) 1.039 km |
¿Cuál es la máxima frecuencia de utilización de una capa de la ionosfera cuya densidad electrónica es de un millón de electrones por centímetro cúbico, para una onda cuyo ángulo de elevación es de 60°? a) 10,4 MHz b) 18 MHz c) 18 kHz d) 10,4 kHz | Respuesta: a) 10,4 MHz Justificación: fp = 9 * raíz(N) MUF = fp/sen(ángulo) Ejercicio |
En 1901 Marconi realizó la primera transmisión radioeléctrica transoceánica utilizando una frecuencia de: a) 0,8 MHz b) 40 MHz c) 80 MHz d) 400 MHz | Respuesta. a) 0,8 MHz Justificación: El 12 de diciembre de 1901, Marconi consiguió realizar de forma satisfactoria la primera comunicación radiotelegráfica transatlántica cubriendo una distancia de 3.000 km entre Gales y Terranova, en el extremo oriental de Canadá. |
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal. | Respuesta: b) SHF, lineal. Justificación: A frecuencias superiores, puede emplearse polarización lineal sin que exista una rotación apreciable en la polarización. |
¿Qué fenómeno permite establecer comunicaciones transoceánicas en C.B. (banda ciudadana: 27 MHz)? a) Difusión troposférica. b) Refracción en la ionosfera. c) Conductos atmosféricos. d) Reflexión en la luna. | Respuesta: b) Refracción en la ionosfera. Justificación: Cuando la variación de n con la altura es significativa, el radio de curvatura no es muy grande y la trayectoria de las ondas no es recta sino que se curva debido a la refracción |
Una señal de OM es captada a 30 km de la emisora. El mecanismo responsable de la propagación es: a) Reflexión ionosférica. b) Refracción troposférica. c) Onda de espacio. d) Onda de superficie. | Respuesta: d) Onda de superficie. Justificación: La onda de superficie es el mecanismo responsable de la propagación a grandes distancias en la banda de MF, donde se encuentra ubicado el servicio de radiodifusión en OM |
¿Cuál de las siguientes afirmaciones sobre la fuente importante de ruido en cada banda es incorrecta? a) Ruido atmosférico en 1-10 MHz. b) Ruido industrial en 10-200 MHz. c) Ruido cósmico en 100 MHz-1GHz. d) Absorción molecular de gases atmosféricos en 1-10 GHz. | Respuesta: d) Absorción molecular de gases atmosféricos en 1-10 GHz. Justificación¨: La atenuación por absorción molecular se debe principalmente a las moléculas de oxígeno y vapor de agua. Para frecuencias inferiores a 10 GHz es prácticamente despreciable, mientras que a frecuencias superiores presenta un comportamiento creciente con la frecuencia. |
Se desea establecer un enlace a 100 MHz con polarización horizontal entre dos puntos separados 1 km. Suponiendo la aproximación de tierra plana y conductora perfecta, ¿a qué altura colocaría las antenas sobre el suelo para obtener una interferencia constructiva entre la onda directa y la onda reflejada? a) 27 m b) 39 m c) 55 m d) 65 m | Respuesta: a) 27 m Justificación: La presencia de obstáculos y la propia esfericidad de la tierra limitan la visibilidad entre antena transmisora y receptora. Al incidir una onda electromagnética sobre un obstáculo se produce un fenómeno de difracción por el cual el obstáculo irradia parte de la energía interceptada. ejercicio |
Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz | Respuesta: a) 8 GHz Justificación: Para dos antenas separadas una distancia R, conectadas a sus correspondientes transmisor y receptor, como se indica en el ejercicio se establece la relación entre la potencia recibida y la radiada y disminuirá a 8Ghz según los cálculos establecidos. |
La máxima frecuencia utilizable (MUF): a) depende de la hora del día; b) depende de la estación del año; c) no depende de la potencia transmitida; d) Todas las anteriores son correctas. | Respuesta: a) depende de la hora del día Justificación: Para que la onda regrese a la tierra. Si se emplea una frecuencia mayor la curvatura de la trayectoria no es suficiente. Nótese que la frecuencia de resonancia es la frecuencia a la que se produce reflexión cuando se incide normalmente a la ionosfera |
El alcance de un sistema de comunicación ionosférica con un ángulo de elevación de 35º y una altura virtual de 355 km es: a) 249 km. b) 497 km. ) 507 km. d) 1014 km. | Respuesta: d) 1014 km. |
Un ionograma es la representación de: a) la altura virtual en función de la frecuencia; b) la densidad electrónica en función de la altura; c) la frecuencia de plasma en función de la altura; d) ninguna de las anteriores. | Respuesta: a) la altura virtual en función de la frecuencia Justificación: Esta expresión supone un modelo de tierra plana y no es válida cuando el ángulo de incidencia en la ionosfera es grande, ya que en este caso debe considerarse el efecto de la curvatura de la tierra. |
Una onda electromagnética que incide verticalmente en una capa ionosférica la atraviesa: a) siempre; b) si la frecuencia de la onda es mayor que la máxima frecuencia de plasma de la capa c) si la frecuencia de la onda es menor que la mínima frecuencia de plasma de la capa; d) nunca. | Respuesta: b) si la frecuencia de la onda es mayor que la máxima frecuencia de plasma de la capa Justificación: Un plasma es una región de espacio, con la permitividad eléctrica y la permeabilidad magnética del vacío, que contiene electrones libres Considérense en primer lugar las fuerzas a las que se encuentra sometido un electrón inmerso en el campo electromagnético de una onda plana. Éste experimentará una fuerza debida al campo eléctrico y otra al campo magnético |
¿Cuál de las características siguientes no es una desventaja de las comunicaciones ionosféricas? a) Ancho de banda reducido. b) Presencia de ruido e interferencias. c) Distancias cortas. d) Propagación multicamino. | Respuesta: c) Distancias cortas. Justificación: Las comunicaciones a grandes distancias. El efecto de la ionosfera es distinto para las diferentes bandas de frecuencias. A frecuencias bajas y muy bajas (bandas de LF y VLF) la ionosfera supone un cambio brusco en términos de λ del índice de refracción atmosférico |
La capa ionosférica D: a) refleja las frecuencias bajas; b) está situada entre 90 y 130 km de altura; c) permite la comunicación a frecuencias entre 30 y 100 MHz; d) tan solo existe de noche. | Respuesta: a) refleja las frecuencias bajas Justificación: La capa inferior D se extiende entre los 50 y 90 km de altura. Su densidad de ionización aumenta rápidamente con la altura y presenta grandes variaciones entre el día y la noche. De hecho, por la noche prácticamente desaparece, por lo que habitualmente se considera que la capa D es una capa diurna. |
La propagación ionosférica: a) es el mecanismo típico de propagación a frecuencias de microondas; b) consiste principalmente en reflexiones en la capa D de la ionosfera; c) consigue generalmente mayores alcances de noche que de día; d) ninguna de las anteriores. | Respuesta: d) ninguna de las anteriores. Justificación: La propagación por reflexión ionosférica es importante en las bandas de MF y HF. Sin embargo, debe tenerse en cuenta que en la banda de MF, y especialmente a frecuencias inferiores a 1 MHz, la capa D presenta una atenuación elevada, proporcional a la densidad de ionización, que imposibilita la refracción ionosférica en esta banda durante el día. Es por este motivo que la propagación ionosférica en la banda de MF presenta un comportamiento totalmente distinto durante el día y la noche |
Durante la noche, la ionosfera está formada por las capas: a) E y F; b) E, F1 y F2; c) D, E y F; d) D, E, F1 y F2. | Respuesta: a) E y F Justificación: De hecho, el límite inferior de la ionosfera es muy variable: mientras que por la noche se encuentra en la capa E, a unos 110 km, la capa F se encuentra arriba a partir de los 130Km. |
¿Cuál de las afirmaciones siguientes relativas a las capas de la ionosfera es cierta? a) La densidad electrónica de las capas D y E varía muy rápidamente con la altura. b) La capa D atenúa las frecuencias bajas y refleja las frecuencias altas. c) La capa E está situada a una altura de 500 km. d) De día las capas F1 y F2 se fusionan en una única capa F. | Respuesta: a) La densidad electrónica de las capas D y E varía muy rápidamente con la altura. Justificación: La capa D su densidad de ionización aumenta rápidamente con la altura y presenta grandes variaciones entre el día y la noche. De hecho, por la noche prácticamente desaparece, por lo que habitualmente se considera que la capa D es una capa diurna. En ciertas ocasiones aparece una ionización anómala en la capa E que se denomina capa E esporádica en zonas templadas la capa Es es bastante frecuente en verano, y alcanza densidades iónicas varias veces superior a la capa E circundante |
La propagación por dispersión troposférica: a) se utiliza típicamente con frecuencias inferiores a 100 MHz; b) permite establecer comunicaciones a distancias superiores al horizonte; c) es un mecanismo de transmisión muy estable; d) no requiere la utilización de técnicas de diversidad. | Respuesta: b) permite establecer comunicaciones a distancias superiores al horizonte. Justificación. Un enlace de este tipo está sujeto a fluctuaciones profundas por la propia dinámica de la ionosfera, las interferencias son frecuentes y las señales se distorsionan debido a la dispersión |
En un radioenlace operando a 38 GHz, las pérdidas más importantes serán debidas a: a) Reflexiones; b) absorción atmosférica; c) vegetación; d) desapuntamiento de las antenas. | Respuesta: b) absorción atmosférica Justificación. La absorción atmosférica es la disminución de la intensidad luminosa de una fuente celeste, causada por los gases que componen la atmósfera. Crece rápidamente en las capas más bajas de la atmósfera, cuya densidad es mucho más elevada que la de los estratos superiores. |
La atenuación por gases atmosféricos: a) es importante para frecuencias de ondas milimétricas; b) presenta un máximo para una frecuencia de 60 GHz; c) depende de la densidad del vapor de agua; d) todas las anteriores son ciertas. | Respuesta: c) depende de la densidad del vapor de agua. Justificación: Para frecuencias inferiores a 10 GHz es prácticamente despreciable, mientras que a frecuencias superiores presenta un comportamiento creciente con la frecuencia y la aparición de rayas de atenuación asociadas a las frecuencias de resonancia de las molécula |
Las pérdidas provocadas por la lluvia en un radioenlace: a) son importantes para frecuencias de aproximadamente 1 GHz; b) son mayores con polarización vertical que con horizontal; c) presentan máximos para las frecuencias de resonancia de las moléculas de agua d) son un fenómeno estadístico. | Respuesta: d) son un fenómeno estadístico. Justificación: En la Teniendo en cuenta la probabilidad de que una cierta intensidad de lluvia ocurra, y sobredimensionando el sistema de forma que la atenuación adicional asociada a esta intensidad de lluvia no afecte al sistema |
La propagación por onda de superficie: a) es un mecanismo típico a frecuencias de UHF; b) se realiza generalmente con polarización horizontal; c) utiliza generalmente como antena transmisora un monopolo; d) sólo se utiliza para distancias cortas como consecuencia de los obstáculos del terreno. | Respuesta: d) sólo se utiliza para distancias cortas como consecuencia de los obstáculos del terreno. Justificación: Cuando el efecto dominante en las pérdidas de propagación es únicamente uno de ellos las permiten estimar adecuadamente. En entornos de propagación complejos en los que existe una superposición de varios efectos, el cálculo de las pérdidas de propagación debe abordarse de forma diferente por ejemplo entornos urbanos. |
Si en un radioenlace no existe visión directa entre la antena transmisora y receptora, entonces: a) la señal recibida será menor que en el caso de espacio libre; b) se debe elevar la antena transmisora hasta que exista visión; c) se debe elevar la antena receptora hasta que exista visión; d) no existe comunicación posible. | Respuesta: a) la señal recibida será menor que en el caso de espacio libre. Justificación: En este caso se considera la formación de la onda de espacio como una interferencia entre la onda directa y la reflejada. Siempre para una buena comunicación debe haber un transmisión directa con el transmisor - receptor . |
Un aumento de la constante de tierra ficticia k produce: a) un aumento de la flecha; b) una menor influencia de los obstáculos; c) un aplanamiento de la superficie terrestre; d) todas las anteriores. | Respuesta: d) todas las anteriores. Justificación: Lógicamente, variaciones en las condiciones atmosféricas (constante k) provocarán cambios en la altura efectiva de los obstáculos. |
1 Un radioenlace transhorizonte de 2000 km que ionosférica puede utilizar la banda de frecuencias: utiliza propagación a) 1 – 50 MHz. b) 100 – 500 MHz. c) 500 – 1000 MHz. d) 1 – 5 GHz. | Respuesta: a) 1 – 50 MHz. Justificación. Se puede considerar que la superficie de la tierra y la parte baja de la ionosfera forman una guía de ondas que favorece la propagación a grandes distancias en estas bandas de frecuencias. |
En un radioenlace punto a punto a 500 MHz donde se requiere una directividad de 25 dB, se debe elegir una antena: a) Yagi. b) Bocina. c) Ranura. d) Reflector parabólico.. | Respuesta: d) Reflector parabólico.. Justificación: Es una transmisión y recepción directa es más propicia una antena parabólica por sus condiciones. |
El coeficiente de reflexión del terreno: a) depende de la frecuencia y de la intensidad de campo; b) depende de la frecuencia y del ángulo de incidencia; c) tiene generalmente un módulo mayor que la unidad; d) ninguna de las anteriores. | Respuesta: b) depende de la frecuencia y del ángulo de incidencia Justificación: Si hay una conexión punto a punto depende de la ubicación |
El fenómeno de reflexión difusa se produce generalmente: a) en el caso de tierra plana; b) para frecuencias elevadas; c) para frecuencias bajas; d) ninguna de las anteriores. | Respuesta: b) para frecuencias elevadas Justificación: Se produce cuando las irregularidades del medio son de un orden de magnitud comparable al tamaño de la longitud de onda de la luz incidente y se proyectan varios rayos sobre este. |
¿Cuál de las afirmaciones siguientes relativas a la reflexión en terreno moderadamente seco es correcta? a) El coeficiente de reflexión vale -1 para incidencia rasante. b) La reflexión tiene una mayor intensidad para frecuencias bajas. c) Con polarización vertical, existe un determinado ángulo de incidencia para el que no hay prácticamente onda reflejada. d) Todas las anteriores son correctas.. | Respuesta: b) La reflexión tiene una mayor intensidad para frecuencias bajas. Justificación: La reflexión es el cambio de dirección de los rayos de luz que ocurre en un mismo medio después de incidir sobre la superficie de un medio distinto |
El índice de refracción de la atmósfera: a) siempre crece con la altura; b) siempre decrece con la altura; c) se mantiene constante con la altura; d) es aproximadamente igual a 1.. | Respuesta: d) es aproximadamente igual a 1. Justificación: El índice de refracción de la parte superior de la atmósfera es n=1, el índice de refracción n0 en la superficie de la Tierra dependerán de la densidad y la temperatura del aire |
8) En condiciones normales, el índice de refracción de la atmósfera: a) vale 2/3; b) crece con la altura; c) decrece con la altura; d) se mantiene constante con la altura. | Respuesta: c) decrece con la altura Justificación: El índice de refracción n0 en la superficie de la Tierra disminuye. |
Si el índice de refracción de la atmósfera crece con la altura, entonces durante la propagación de una onda el haz: a) se aleja de la superficie terrestre; b) se acerca a la superficie terrestre; c) transcurre paralelo a la superficie terrestre; d) ninguna de las anteriores. | Respuesta: a) se aleja de la superficie terrestre Justificación: Es el cambio de dirección de los rayos de luz que ocurre tras pasar estos de un medio a otro en el que la luz se propaga con distinta velocidad. |
Si la curvatura del haz es igual que la de la superficie terrestre, entonces la constante de tierra ficticia vale: a) k = 0. b) k = 1. c) k = 4/3. d) k = ∞ | Respuesta: d) k = ∞ Justificación: Cuando esta en la superficie la constante es infinita. |
Si el haz se propaga de forma rectilínea, entonces la constante de tierra ficticia vale: a) k = 0. b) k = 1. c) k = 4/3. d) k = ∞ | Respuesta: b) k = 1. Justificación: Porque se propaga en forma rectilínea no hay variación. |