Foundations of Physics 3A
🇬🇧
In Inglés
In Inglés
Practique preguntas conocidas
Manténgase al día con sus preguntas pendientes
Completa 5 preguntas para habilitar la práctica
Exámenes
Examen: pon a prueba tus habilidades
Pon a prueba tus habilidades en el modo de examen
Aprenda nuevas preguntas
Modos dinámicos
InteligenteMezcla inteligente de todos los modos
PersonalizadoUtilice la configuración para ponderar los modos dinámicos
Modo manual [beta]
Seleccione sus propios tipos de preguntas y respuestas
Modos específicos
Aprende con fichas
Completa la oración
Escuchar y deletrearOrtografía: escribe lo que escuchas
elección múltipleModo de elección múltiple
Expresión oralResponde con voz
Expresión oral y comprensión auditivaPractica la pronunciación
EscrituraModo de solo escritura
Foundations of Physics 3A - Marcador
Foundations of Physics 3A - Detalles
Niveles:
Preguntas:
22 preguntas
🇬🇧 | 🇬🇧 |
Selection Rules | <n'l'm'|z|nlm>= 0 unless m'=m <n'l'm'|x or y|nlm> =0 if m' != m +- 1 <<n'l'm'|r|nlm> = 0 if l' != l +- 1 |
Pertubation theory up until 1st Order energy correction to Hamiltonian | E'n = En + <Φ|H'|Φ> |
Rayleigh Ritz Variation | <Φ|H|Φ>/<Φ|Φ> >= E0 |
Can two particles be in the same single-particle state φ(r)? | Distinguishable particles - yes, bosons - yes, fermions - no (Pauli's exclusion principle) |
For two identical particles that do not interact with each other, what are the many-body wave functions that satisfy the correct symmetry | Bosons : Φ(r,r') proprtional to Φ1(r) Φ2(r') + Φ2(r) Φ1(r') Fermions : Φ(r,r') proprtional to Φ1(r)Φ2(r) - Φ2(r) Φ1(r') Distinguishable particles : Φ(r,r') = Φ1(r) Φ2(r') |
Pauli Spin matrices | In x: opposite of identity matrix in y: -i in position (2,1) , i in position (1,2) in z: identity matrix but bottom right is -1 |
Relationship between potential A and B field | B is the curl of A A is not unique for a value of B, as you can add any scalar field to A and B is the same |
Hamiltonian of a charged particle in a mag field B | H = (p-qA)^2/2m |
Hamiltonian (very very basic definition) | H = T + V, where T is kinetic E and V is potential energy |
Parity and angular momentum in even-even nuclei | Parity = +1, as for every nucleon we can find another with the same parity Angular momentum = 0, as nucleons will pair up and give no net total |
What are magic numbers | Atomic numbers that correspond to completely filled shells, that make elements much more stable (meaning more stable isotopes). These numbers are 2, 8, 20, 28, 50, 82, and 126. |
Difference between mean lifetime and half life | Practically, a factor of ln(2). Mean lifetime - average time to decay, also the time taken for a sample to decrease by 0.368. Half life - time for half of sample to deay |
Parity and angular momentum of an even-odd nucleus | (L +/- 1/2)^L |
Selection rules | |J_p - J_d | <= l <= J_p + J_d and (-1)^l = +/- P_d*P-P for an E/M l transition |
Strength of forces (strong to weak) | Strong - EM - Weak - Gravity |
How does coupling constant effect strength of a force | Higher coupling constant = stronger force |
Color in hadrons | Attractive force only exists when it is colourless, so for mesons you have a quark and an antiquark, and then for baryons you have one of each colour (mixing 3 colours gets white) |
What must be conserved at each vertex of a Feynmann diagram | Charge, baryon number and lepton number |
Forbidden interactions | - Something decaying into a quark and lepton (stuff will not be conserved) - Photon decaying into photons, as there is no charge for a photon - Gluons can't decay into a gluon and another force mediator, because colour rules violate it |
Quark Decays | T -> b -> c -> s -> u <-> d |
Wavefunction properties to remember | For fermions, total wavefunction is antisymmetric For ground state spacial wfn is symmetric Colour wavefunction is antisymmetric |