Buscar
Estás en modo de exploración. debe iniciar sesión para usar MEMORY

   Inicia sesión para empezar

MATHS FLASH CARDS


🇬🇧
In Inglés
Creado:


Public
Creado por:
GN Tutorials


5 / 5  (1 calificaciones)



» To start learning, click login

1 / 11

[Front]


(2x – 1/x)²
[Back]


Solution: (i) (2x – 1/x)² [Use identity: (a – b)² = a² + b² – 2ab ] = (2x – 1/x)² = (2x)² + (1/x)² – 2 (2x)(1/x) = 4x² + 1/x² – 4

Practique preguntas conocidas

Manténgase al día con sus preguntas pendientes

Completa 5 preguntas para habilitar la práctica

Exámenes

Examen: pon a prueba tus habilidades

Course needs 15 questions

Aprenda nuevas preguntas

Modos dinámicos

InteligenteMezcla inteligente de todos los modos
PersonalizadoUtilice la configuración para ponderar los modos dinámicos

Modo manual [beta]

Seleccione sus propios tipos de preguntas y respuestas
Modos específicos

Aprende con fichas
Completa la oración
Escuchar y deletrearOrtografía: escribe lo que escuchas
elección múltipleModo de elección múltiple
Expresión oralResponde con voz
Expresión oral y comprensión auditivaPractica la pronunciación
EscrituraModo de solo escritura

MATHS FLASH CARDS - Marcador

0 usuarios han completado este curso. ¡sé el primero!

Ningún usuario ha jugado este curso todavía, sé el primero


MATHS FLASH CARDS - Detalles

Niveles:

Preguntas:

11 preguntas
🇬🇧🇬🇧
(2x – 1/x)²
Solution: (i) (2x – 1/x)² [Use identity: (a – b)² = a² + b² – 2ab ] = (2x – 1/x)² = (2x)² + (1/x)² – 2 (2x)(1/x) = 4x² + 1/x² – 4
(2x + y) (2x – y)
[Use identity: (a – b)(a + b) = a² – b² ] (2x + y) (2x – y) = (2x )² – (y)² = 4x² – y²
(a + 2b + c)²
(a + 2b + c)² = a² + (2b) ² + c² + 2a(2b) + 2ac + 2(2b)c = a² + 4b² + c² + 4ab + 2ac + 4bc
(2+x−2y)²
(2+x−2y)² = 2² + x² + (−2y)² + 2(2)(x) + 2(x)(−2y) + 2(2)(−2y) = 4 + x² + 4y² + 4 x − 4xy − 8y
(2x−y+z) 2
(2x−y+z) 2 = (2x) 2 + (−y) 2 + (z) 2 + 2(2x)(−y) + 2(−y)(z) + 2(2x)(z) = 4x2 + y2 + z2 − 4xy−2yz+4xz
(2x−y+z) ²
(2x−y+z) ² = (2x) ² + (−y) ² + (z)² + 2(2x)(−y) + 2(−y)(z) + 2(2x)(z) = 4x² + y² + z²− 4xy−2yz+4xz
(−2x+3y+2z) ²
= (−2x) ² + (3y) ² + ( 2z) ²+ 2(−2x)(3y)+2(3y)(2z)+2(−2x)(2z) = 4x² + 9y² + 4z² −12xy+12yz−8xz
Factorize the given expression: 27x³ - 63x²+ 49x - 343/27
Compare the given expression to the standard cubic algebraic identity to factorise (a - b)3 = a3 - 3a2b + 3ab2 - b3 Compare 27x3 - 63x2 + 49x - 34327 to a3 - 3a2b + 3ab2 - b3 We can deduce that 27x3 = a3 or (3x)3 = a3 ∴ a = 3x And 34327 = b3 or [73]3 = b3 ∴ b = 73 So, 27x3 - 63x2 + 49x - 34327
(i) (1/x + y/3)
[Using identities: (a + b)³ = a³ + b³ + 3ab(a + b) and (a – b)³ = a³ – b³ – 3ab(a – b) ]
(ii) (3/x – 2/x2)
[Using identities: (a + b)3 = a3 + b3 + 3ab(a + b) and (a – b)3 = a3 – b3 – 3ab(a – b) ]
(ii) (4 – 1/3x)
[Using identities: (a + b)3 = a3 + b3 + 3ab(a + b) and (a – b)3 = a3 – b3 – 3ab(a – b) ]
(ii) (x/2 + y/3) ³
(x/2 + y/3) ³ [Using identities: (a + b)³ = a³ + b³ + 3ab(a + b) and (a – b)³ = a³ – b³ – 3ab(a – b) Here a = (x/2 ) and b = ( y/3) x³/8 + y³ / 27 + 1/4 (3x²y + 2xy²)
Factorize the given expression: 27x³ - 63x²+ 49x - 343/27
Compare the given expression to the standard cubic algebraic identity to factorise (a - b)³ = a³ - 3a²b + 3ab² - b³ Compare 27x³ - 63x² + 49x - 343/27 to a³ - 3a²b + 3ab² - b³ We can deduce that 27x³ = a³ or (3x)³ = a³ ∴ a = 3x And 343/27 = b³ or [73]³ = b³ ∴ b = 7/3 So, 27x³ - 63x²+ 49x - 343/27 (3x)³ - 3(3x)²(7/3) + 3(3x)[7/3]² - [7/3]³ = [3x−7/3]³ = [3x−7/3] [3x−7/3] [3x−7/3]
Using suitable identity evaluate the following: 98³
(98)³ = (100 - 2)³ = (100 - 2)³is of the form (a - b)³ (a - b)³ = a³ - 3a²b + 3ab² - b³ So, (100 - 2)³ = 100³ - (3 × 100² × 2) + (3 × 100 × 2²) - 2³ = 1,000,000 - 60,000 + 1200 - 8 = 9,41,192