Buscar
Estás en modo de exploración. debe iniciar sesión para usar MEMORY

   Inicia sesión para empezar

Maths Apps ATAR - bivariate data


🇬🇧
In Inglés
Creado:


Public
Creado por:
Chelsey Louise


0 / 5  (0 calificaciones)



» To start learning, click login

1 / 17

[Front]


what are the 2 types of variables in this unit
[Back]


explanatory variable (ev). independant response variable (rv). dependant

Practique preguntas conocidas

Manténgase al día con sus preguntas pendientes

Completa 5 preguntas para habilitar la práctica

Exámenes

Examen: pon a prueba tus habilidades

Pon a prueba tus habilidades en el modo de examen

Aprenda nuevas preguntas

Popular en este curso

Aprende con fichas

Modos dinámicos

InteligenteMezcla inteligente de todos los modos
PersonalizadoUtilice la configuración para ponderar los modos dinámicos

Modo manual [beta]

Seleccione sus propios tipos de preguntas y respuestas
Otros modos disponibles

Completa la oración
Escuchar y deletrearOrtografía: escribe lo que escuchas
elección múltipleModo de elección múltiple
Expresión oralResponde con voz
Expresión oral y comprensión auditivaPractica la pronunciación
EscrituraModo de solo escritura

Maths Apps ATAR - bivariate data - Marcador

1 usuario ha completado este curso

Ningún usuario ha jugado este curso todavía, sé el primero


Maths Apps ATAR - bivariate data - Detalles

Niveles:

Preguntas:

17 preguntas
🇬🇧🇬🇧
What are the 2 types of variables in this unit
Explanatory variable (ev). independant response variable (rv). dependant
What is association and how is it displayed
A link between two variables two way frequency table
Segmented bar charts use and composition
When there are multiple categories on the x axis. persentage on y axis (0-100%) , catagories on x multiple segments to =100%
How to identify association scatterplot and normal
Scatterplot- no pattern =no association pattern =association table: use percentages, 5%+ difference = association
There is an association on a scatter point, describe 4 factors of the patterns. these are?
Direction - positive negative strength - strong, moderate, weak outliers - if present form - linear, non linear (curve)
What is the correlation coefficient and it values
The strength of a linear relationship represented by 'r' closer to -/+ 1, the more linear and straight the data lies 0 = no association. exactly +/-1 =perfect linear association
Strengths classifications of linear associations (numbers intervals indicating strong weak strength)
Remember 0.75, 0.5, 0.25 0.75+=strong ,0.5 +=moderate, 0.25+=weak, any less= no association
What 3 assumptions are being made when using correlation coefficient
Variables are numerical association is linear no outliers in data
What is the coefficient of determination
The accuracy at which we can predict one variable using the other represented by r^2 (always between 0-1) because if r=1 and the graph is perfectly linear we can predict variables with complete accuracy. ie. given hight we can predict weight to r^2 %
When interpreting the coefficient of determination we use the phrase:
R^2% of the variation in the response variable can be explained by the explanatory variable - put on note sheet for part b
Not a question
Correlation tells you about the strength of the association, but nothing about the source or cause of the association. an example is the association between use of sunscreen and presents of heat stroke, heatstroke and sunscreen do not cause each other. therefore correlation does not imply causality
Linear regression
Placing a straight line on a data set
Least squares regression
A line where the sum of the regressions ( difference between predicted value and actual value) is the least possible. equation is y=ax+b
Interpolation
Predictions within the data range
Extrapolation
Predictions outside the data range
Residual
Residual data= actual data (y)- predicted data (ÿ). (can be +,-,0) predicted value can be found by substituting a known x value into the least squares regression formula.
Residual graph layout
Residual on y axis, -,0,+ x axis pertruding from 0 lack of a clear pattern confirms a linear association.